

Power Units

max. operating pressure 500/250/160 bar

Power unit for double-acting cylinders with cover and handle, and optionally with pushbutton or foot-actuated switch.

Application

These power units are particularly suited for small and medium sized power workholding fixtures. The available configurations allow various selections of output flow, pressure, type of cylinder and operating switches.

Construction

Main feature is the submerged pump and motor assembly. Hydraulic and electric control or terminal box are arranged easily accessible on the reservoir cover plate. In this way, all parts are mounted within the unit base outline, and are protected against damage during mobile use.

Accessory see page 4

An optional cover (accessory) adds additional protection to the controls. Other available options are a handle and a mounting bracket for the push-button switch.

Delivery

The power units are operational, after they are charged with hydraulic oil and the electrical power connection is made; optionally they are available without electric control, with terminal box, without switch.

Arrangement of power units at machine tools

Hydraulic power units should be arranged whenever possible outside the swarf area and handling area of operating personnel above the workholding fixture plane.

Ordering

For version with mounted temperature and oil level control switch mark letter **"T"** behind the **part-no.**

Example: power unit, double acting with push-button and temperature and oil level control switch **part-no. 8400-183 T.**

* Not possible in case of 2 double-acting circuits

Output flow	[cm ² [l/n	³ /s] nin]	13.67 0.82	35.0 2.1	58.5 3.51
max. operating pressu	ure [k	par]	500	250	160
Cylinder type	Switch type	Weight [kg] Part-no.	Part-no.	Part-no.
With electric contr	rol				
single acting (1 valve)	push-bu foot-actuated sw without sw	tton 29.5 ritch 30.5 ritch 28.5	8400-121 8400-122 8400-131	8400-221 8400-222 8400-231	8400-321 8400-322 8400-331
double acting (2 valves)	push-bu foot-actuated sw without sw	tton 30.5 ritch 31.5 ritch 29.5	8400-103 8400-104 8400-113	8400-223 8400-224 8400-233	8400-323 8400-324 8400-333
two double acting (two 4/2 directional 2 control valves)	2 push-butt 2 foot-actuated switc without sw	ions 32.5 hes 33.5 ritch 31.5	8400-107 8400-108 8400-115	8400-207 8400-208 8400-215	8400-307 8400-308 8400-315
two single acting (shuttle machining) (2 valves)	2 push-butt 2 foot-actuated switc without sw	ions 31.5 iches 33.5 ritch 29.5	8400-105 8400-106 8400-113	8400-225 8400-226 8400-233	8400-325 8400-326 8400-333
single acting with machine tool interlo (1 valve)	push-bu ock foot-actuated sw without sw	tton 30.5 ritch 31.5 ritch 29.5	8400-181 8400-182 8400-187	8400-281 8400-282 8400-287	8400-381 8400-382 8400-387
double acting with machine tool interlo (2 valves)	push-bu ock foot-actuated sw without sw	tton 31.5 ritch 32.5 ritch 30.5	8400-183 8400-184 8400-188	8400-283 8400-284 8400-288	8400-383 8400-384 8400-388
two single acting (shuttle machining) with mach. tool interl.	2 push-butt 2 foot-actuated switc (2 valves) without sw	cons32.5ches33.5ritch31.5	8400-185 8400-186 8400-189	8400-285 8400-286 8400-289	8400-385 8400-386 8400-389
without valves	without sw	itch 27.5	8400-110	8400-210	8400-310
With terminal box					
single acting (1 valve)	without sw	itch 28.0	8400-141	8400-241	8400-341
double acting or shuttle machining (2 v	without sw valves)	itch 29.0	8400-142	8400-242	8400-342
two double acting (two 4/2 directional co	without sw ontrol valves)	itch 31.5	8400-146	8400-246	8400-346
single acting with mach. tool interl.	without sw (1 valve)	vitch 29.0	8400-143	8400-243	8400-343
double acting with mach. tool interl.	without sw (2 valves)	itch 30.0	8400-144	8400-244	8400-344
two single acting (shuttle machining) with mach. tool interl.	without sw (2 valves)	itch 29.0	8400-145	8400-245	8400-345

Römheld GmbH · Postfach 1253 · D-35317 Laubach · Phone +49 (0) 64 05 / 89-0 · Telefax +49 (0) 64 05 / 89-211

ROEMHELD

Control variants

Single-acting cylinders

Connecting several single-acting cylinders to one pressure port is possible.

Sequence control, e.g. positioning before clamping can be easily attained with sequence valves as per data sheet C 2.954. The unit for shuttle machining allows the operation of two independent circuits with two switches.

Double-acting cylinders

Several double-acting cylinders can be connected to the two pressure ports of the unit. Singleacting cylinders can be connected additionally, however, they retract slower than the doubleacting cylinders. Pressure dependent sequence controls can be applied, too.

These power units can be equipped with max. 4 valves, which are vertically mounted. If necessary, please contact us!

Power unit without valve

This unit is used in conjunction with external hydraulic controls only. The power unit serves as an independent pressure source with its own electrical control, maintaining a set pressure by a pressure control switch.

Safety provisions

An increased safety in power workholding is achieved through the following characteristics: Operating pressure stepless adjustable from 25 bar (8400-2XX and 8400-3XX), 50 bar (8400-1XX) respectively, therefore precisely defined clamping force with accurate repeatability. Visual control of operating pressure through built-in pressure gauge. If required the gauge could be disconnected and installed elsewhere at the fixture in a protected location. For shuttle machining an additional gauge is necessary. Automatic control of operating pressure through built-in pressure switch. A pressure drop of approx. 10% will cause the pump motor to start again.

No immediate pressure loss on power failure. The solenoid valves are deenergized in the "clamped position" and the poppet types provide tight sealing.

Oil level and temperature control: 'T'

Each power unit can be guipped with this accessory. This combined level and temperature transducer will be screwed into a thread of the reservoir cover, the cable must be connected in the electric control box according to the electric circuit diagram (see page 3). The electrical bridge between terminal 5 and 6 must be removed. Function: If the oil level drops below a predetermined level or the oil temperature exceeds 60°C (continuous run of the pump) the electric motor will be cut off. A LED placed below the main switch is lit. The motor starts running after replenishing the oil level or an oil temperature drop respectively.

Machine tool interlock

All power units can be equipped with one, or two pressure switches for shuttle machining, to control machine tool interlock. The pressure switches are adjusted to 80% of the operating pressure and are electrically connected to the control of the machine tool. Therefore the machine tool can only start operation if the fixture has been clamped. On the other side the machine tool will be cut off if pressure drops down for more than 20%.

General characteristics

donoral onaraote	1104100
Design	Radial piston pump
Direction of rotation	nany
Porting	G 1/4 for male connectors
-	form B, DIN 3852
Mountings	3 bolts M 8
-	(not required for mobile use
Mounting position	upright
Environmental	
temperature	–10 + 35° C
Noise level	max. 80 dB (A)
	(in 1 m distance and height
	above the floor)

Hydraulic characteristics

Viscosity range	(4300) 10 ⁻⁶ m ² /s	
viscosity class Recom.	ISO VG 22 as per DI	N 51519
hydraulic oil	HLP 22 as per DIN 5 (not suited for fluids of type HS-A, HS-C and	1524 of the d HS-D)
Oil charge [l] Usable oil volume	normal* 3.8 [] 1.75	max.** 5.0 2.95

The difference on the oil level gauge is max. - min. 0.97 l * black mark on the oil level gauge

**up to the reservoir cover

Electrical characteristics Elect

Electric motor	
Туре	2-pole three-phase motor
Rating	0.75 kW
Speed	2830 1/min
Voltage	3/PE ~ 50 Hz, 400 V
0	Other voltages and frequen-
	cies on request available
Current	1.95 A
COS φ	0.82
Isolation class	B as per VDE 0530
Duty cycle	see section 9
Main switch	Main switch with
	excess current
Control	Circuit breaker with thermal
electric motor	overload protection
	Pressure switch control:
	Control voltage 24 V DC
Valves	Controlled by push-button or
	foot-actuated switch
	Control voltage 24 V DC
Fuses	Motor to be externally fused
	with 3x6A slow. Internal
	electric control circuit 24 V DC
	Fuses
	Primary: 2x4 A slow, 5x30 mm
	Secondary: 1x2Aslow, 5x20 mm
Main switch	can be pad-locked
Code class	IP 54
Electric.connections	Wire 4x1mm ²
Push-button switch	5 x 1 mm ² approx. 3 m long

Push Foot-actuated switch 6 x 1 mm² approx. 3 m long EMC tested

Relative duty cycle

This power unit can only be used intermittently similar to section S 3 of VDE 0530. The motor will be cut off by the pressure switch as soon as a preset pressure is reached. Relative duty cycle will be determined using the following diagram.

t_B = time elapsed from motor start to motor cut off (running time)

$$t_{St}$$
 = idle time t_S = cycle time $\delta ED = \frac{t_B}{t_B + t_{St}} \cdot 100 = \frac{t_B}{t_S} \cdot 100$

Different motor running and idle times are simply added.

Example: Power workholding fixture with double-acting cylinders

with double doting cylinders		
Clamping time	t _{B1}	= 5s
Machining time	t _{St1}	= 60 s
Unclamping time	t _{B2}	= 3s
Load-unload time	t _{St2}	= 12 s
Cycle time	ts	= 80 s
$\% ED = \frac{t_{B1} + t_{B2}}{t_S} \cdot 100 = \frac{5s + 3s}{80s} \cdot 100$		

FD = 10%

The max. relative duty cycle is a function of the motor load. Motor winding temperature of the submerged motor is dependent upon oil temperature and oil level. Winding is totally oil cooled at max. oil level (up to reservoir cover), however air cooled when usable oil volume (2.95 l) is used up. This reduces the relative duty cycle with decreasing oil level.

Data of max. relative duty cycle given below were determined for an environmental temperature of 23°C.

The max. oil temperature is 60°C.

1) refers to the lowest admissible oil level (at the same time switching point of oil level control. See accessory).

Oil level		8400-1XX	8400-2XX	8400-3XX
max.	[% ED]	40	25	20
min.	what relative duty cycle at $\delta_u = 23^{\circ} \text{ G}$ [% ED]	25	20	16

Max. uninterrupted running time (t_B max.) of pumps for the following oil levels in the reservoir¹)

Maximum: Up to reservoir cover Useable oil volume approx. 2.95 l	120 s	84 s	50 s
Normal: Black mark at oil level gauge Useable oil volume approx. 1.75 l	120 s	50 s	29 s
Minimum: Red mark at oil level gauge Useable oil volume approx. 0.78 l	57 s	22 s	13 s

Hydraulic circuit diagrams

For single-acting cylinders with pressure switch for machine tool interlock

Electric circuit diagrams

S2 = Switch Y1 and Y2 = 3/2 Solenoid valve

(S1/V1 = oil control accessory only on request)

Note: Pressure switches for machine tool interlock are directly connected.

For connection of oil level and temperature control remove electrical bridge from 5 to 6.

The luminous diode in switch S2 or S4 is lit, if 'clamping' has been triggered, the pressure in the system has been built up, and the pressure switch S0 has reacted. In the case of renewed cycling of the pump it goes out for a short time.

Also if in the case of pendulum fixtures clamping of the corresponding unclamped fixture has been triggered.

Note: an effective monitoring of the clamping pressure should be made by a pressure gauge at the fixture.

łĘ

⊨́M

Hydraulic circuit diagrams

For two circuits with single acting cylinders (e.g. view with pressure switch for machine tool interlock).

For two circuits with double-acting cylinders

Electric circuit diagrams

Without valves and without switches

